
INTRODUCTION
TO COMPUTER

VISION

Natalie Parde
parde@uic.edu

CS 594: Language and Vision
Spring 2019

mailto:parde@uic.edu

Computer Vision

■ The study of computational mechanisms that
enable machines to interpret, modify, and generate
visual imagery.

© 2019 Natalie Parde

How are images
represented in

computer
vision?

• Two-dimensional array of pixels
• A numeric value is associated

with each pixel, corresponding
to its color/shade

© 2019 Natalie Parde

Types of Images
■ Black and white

– All pixels contain a binary value
■ Grayscale

– All pixels contain an integer ranging from 0-255
– This value corresponds to shade from black to white

■ Color
– All pixels contain three integers, each ranging from 0-255
– These values correspond to shades of three color channels: red,

green, and blue

© 2019 Natalie Parde

A few core tasks….

IMAGE
PROCESSING

IMAGE
SEGMENTATION

IMAGE
CLASSIFICATION

© 2019 Natalie Parde

Image Processing

■ Performing an action or sequence of actions on an image in order
to transform it or extract information from it

■ Actions might include:
– Blurring the image
– Sharpening the image
– Making the image brighter
– Making the image darker
– Cropping the image
– Resizing the image

© 2019 Natalie Parde

Gaussian Blur

■ Blurring an image using a Gaussian function

■ All pixels in a square window are multiplied by fractions corresponding to their
distance from the center of the window

■ The products are summed to produce the single value for the output pixel

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

1
256

© 2019 Natalie Parde

Sobel Filter

■ Detecting edges by identifying areas in an image with sharp changes in color and/or
intensity between two adjacent pixels

■ All pixels in a square window are multiplied by two different kernels
– One designed to catch horizontal changes
– One designed to catch vertical changes

ax,ay bx,by cx,cy

dx,dy x,y ex,ey

fx,fy gx,gy hx,hy

-1 0 1

-2 0 2

-1 0 1

!′ = −%& + (& − 2*& + 2+& − ,& + ℎ&
./ = −%0 − 210 − 10 + ,0 + 220 + ℎ0

-1 -2 -1

0 0 0

1 2 1

mag !/, ./ = !′7 + .′7 © 2019 Natalie Parde

One obvious
application of image
processing….

■ Instagram filters!

■ Typically a mix of
blurring/sharpening and
color operations

© 2019 Natalie Parde

Other Applications
■ Image editing

■ Image stitching

■ Image restoration

■ Digital art

© 2019 Natalie Parde

Image Segmentation

■ Automatically finding the boundaries between
different entities in an image

■ Necessary preprocessing step for many
downstream tasks!

■ Two common approaches:
– Watershed method
– K-means clustering

© 2019 Natalie Parde

Watershed Algorithm
■ An image segmentation technique modeled after

the way water flows from a high point (a hill or
mountain) to a lower point (a river or large body of
water)

– A watershed is the high point, whereby on
one side water flows one way, and on the
other side it flows the other way

■ Images are converted to grayscale
– Viewed as a topographic map, high points →

light shades, low points → dark shades
■ Pixels in the image can correspond to:

– A local minimum
– A basin that flows to the local minimum
– Watershed lines

■ Goal is to detect the watershed lines, thereby
segmenting the image

© 2019 Natalie Parde

K-Means Clustering
■ Segments images by clustering pixels into k groups based on their

associated features

■ K-Means clustering works by:
1. Randomly assigning each pixel to one of k clusters
2. Computing the mean of each cluster
3. Computing the similarity between each pixel (regardless of

current cluster assignment) and each cluster mean
4. Assigning each pixel to the cluster to whose mean it is most

similar
5. Repeating steps 2-4 until the clusters converge

■ K-Means clustering can be applied to many tasks!

■ With image segmentation, additional assumptions can be added
when assigning pixels to improve upon segmentation performance
(e.g., neighboring pixels are highly likely to belong to the same
cluster)

© 2019 Natalie Parde

Image Classification
■ Automatically assigning a category label to an image or to an entity in an image

■ Why is this difficult?

– Different perspectives

– Different sizes

– Proximity to other objects

– Lighting conditions
– Variation among objects of the same class

© 2019 Natalie Parde

How can we solve this problem?

■ Lots of data!

■ Traditional machine learning
– K-Nearest Neighbor (classification version of K-Means)

■ Deep learning
– Convolutional neural networks

? ?

© 2019 Natalie Parde

Features for
Image

Classification

RGB Histograms

Local Binary Patterns (LBP)

Histograms of Oriented Gradients (HOG)

Scale-Invariant Feature Transform (SIFT)

Neural Features

© 2019 Natalie Parde

RGB Histograms

■ Computed across a region, rather than a single pixel

■ N-dimensional (1 ≤ # ≤ 255) feature vector for each color channel (red, green, and
blue)

■ Feature values correspond to the number of pixels in each range within the region of
interest

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

20
6

21
1

21
6

22
1

22
6

23
1

23
6

24
1

24
6

25
1

n = 255

Fr
eq

ue
nc

y

© 2019 Natalie Parde

Local Binary Patterns
■ Computes a local representation of texture by comparing the values for a given pixel

with those of other neighboring pixels

■ Sets binary values for neighboring pixels based on a threshold:
– Current pixel ≥ neighboring pixel → 1
– Current pixel < neighboring pixel → 0

■ Converts n-bit array of binary pixel values to decimal

■ When a decimal value has been computed for all pixels, computes a histogram over
all decimal values

■ This histogram is the feature vector!

6 8 2

7 5 4

1 3 9

1 1 0

1 0

0 0 1

1 1 0 1 0 0 0 1 209
0

50
100
150

1 44 87 13
0

17
3

21
6

© 2019 Natalie Parde

Histograms of Oriented Gradients
■ Computes the distribution of gradient (increases or decreases in magnitude) orientations

within a source image, providing us with information about the shapes of objects in the image
■ Starts by computing the horizontal and vertical gradients for each pixel, along with their

magnitude and direction
■ Calculates histograms of the computed gradients in pixel windows of size !×#

– Bins in the histogram correspond to angles
– Values added to the bins correspond to magnitudes

■ Normalizes blocks of gradients across multiple pixel windows
■ Concatenates all normalized vectors of histograms to create the final feature vector

ax,ay

bx,by x,y cx,cy

dx,dy

-1 0 1

-1

0

1

$′ = −() + +)
,- = −./ + 0/
mag $-, ,- = $′5 + ,′5

6 = arctan $′,′

0
50

100
150

0 40 80
120

160
0

50
100
150

0 40 80
120

160

0
50

100
150

0 40 80
120

160
0

50
100
150

0 40 80
120

160

© 2019 Natalie Parde

Scale-
Invariant
Feature

Transform

Computes keypoints in
an image in a way that

is invariant to size,
rotation, perspective,

and lighting conditions

Progressively blur an
image using Gaussian

Blur across several
octaves (resized images

that are half the
previous size)

Compute the Difference of
Gaussians (DoG) for each
sequential pair of blurred
images, subtracting the

blurrier from the clearer of
the two

Compute the minima and
maxima in the DoG images by
comparing each pixel with all
others in its neighborhood
(including pixels in the DoGs
“above” and “below” it)
•If the pixel itself is higher or lower than all
other pixels in its neighborhood, it is a
minimum or maximum

Reject minima and
maxima (a) with

intensities below a
threshold or (b)
having gradients

indicative of a flat
region or edge

(rather than a corner)

Compute the gradient and
magnitude of the pixels
around each keypoint
(minima/maxima), and
construct histograms of
these gradients using 10-
degree bins
•The keypoint is assigned the
orientation that serves as the “peak”
in the histogram

Generate a 16x16
pixel window
around each
keypoint, and

break that window
in sixteen 4x4

windows

Compute the
gradient and

magnitude for each
4x4 window, and

construct histograms
using 45-degree bins
ranging from 0-360

degrees

Normalize the values in those bins
(subtract the keypoint’s orientation
from each 4x4 window, and create

a maximum threshold to avoid
influence from changes in lighting),
producing the 128-dimensional (16

4x4 windows, 8 bins per window)
feature vector for the keypoint

A-B

B-C

C-D

0
50

100
150

0 90
180

270
360

© 2019 Natalie Parde

Neural Features
■ Raw pixel values

■ Pixel values in sliding windows
– Individual windows are fed into the neural network

■ Pixel regions
– Input image is first scanned for possible objects using a search algorithm, and the

pixel regions comprising the possible objects are then fed into the neural network

■ The neural network automatically learns which combinations of pixels/pixel values
represent different image features …the bulk of the work when using neural features
shifts to tuning parameters in the network

© 2019 Natalie Parde

Think, Pair, Share
■ Write down three computer vision tasks for which

one or more of the engineered features we
discussed (RGB histograms, LBP, HOG, and SIFT)
might be useful, and three tasks for which implicitly
learned features might have an advantage over
other feature types

■ Talk about those viewpoints with a partner
– Did you name similar tasks?
– Did you disagree about anything?

■ Share one task for which one or more of the
engineered features might be useful, and one task
for which implicitly learned features might have an
advantage

■ Timer: https://www.google.com/search?q=timer

© 2019 Natalie Parde

https://www.google.com/search?q=timer

Popular
Tools for

Computer
Vision Tasks

•https://opencv.org/OpenCV

•https://scikit-
image.org/

scikit-
image

•http://simplecv.org/SimpleCV

•https://python-
pillow.org/Pillow

© 2019 Natalie Parde

https://opencv.org/
https://scikit-image.org/
http://simplecv.org/
https://python-pillow.org/

Datasets and Other Useful
Resources
■ Huge, curated list of computer vision books, courses, datasets, libraries, tutorials,

blogs, etc.: https://github.com/jbhuang0604/awesome-computer-vision

■ Main computer vision conferences:
– IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– IEEE International Conference on Computer Vision (ICCV)

■ Datasets for various computer vision tasks:
– http://www.cvpapers.com/datasets.html
– http://riemenschneider.hayko.at/vision/dataset/
– https://www.visualdata.io/

■ ImageNet Challenge:
– 2018 onward: https://www.kaggle.com/c/imagenet-object-localization-

challenge
– 2017 and prior: http://image-net.org/challenges/LSVRC/2017/index

© 2019 Natalie Parde

https://github.com/jbhuang0604/awesome-computer-vision
http://www.cvpapers.com/datasets.html
http://riemenschneider.hayko.at/vision/dataset/
https://www.visualdata.io/
https://www.kaggle.com/c/imagenet-object-localization-challenge
http://image-net.org/challenges/LSVRC/2017/index

Applications
of Computer

Vision

Face recognition Emotion
recognition

Biomedical
image processing

Self-driving cars Robotics

© 2019 Natalie Parde

Face Recognition
■ Automatically matching new faces to known individuals

■ Useful for a variety of applications:
– Surveillance
– Passport/ID card authentication
– Safety alerts
– Photo tagging

■ Must be robust to changes in perspective, scale, and
lighting

■ Popular methods:
– GaussianFace:

https://github.com/jangerritharms/GaussianFace
– FaceNet:

https://github.com/davidsandberg/facenet

■ Useful face recognition library:
https://github.com/ageitgey/face_recognition

© 2019 Natalie Parde

https://github.com/jangerritharms/GaussianFace
https://github.com/davidsandberg/facenet
https://github.com/ageitgey/face_recognition

Emotion Recognition
■ Automatically matching facial expressions to a set of

known emotions

■ Useful for:
– Forensics
– Marketing
– Social robotics

■ Open question: should emotion recognition be framed
as a categorical or continuous problem?

– Most work to date has classified emotions into
seven discrete categories: fear, anger, sadness,
disgust, contempt, happiness, and surprise

■ Useful tools for emotion recognition:
– EmoPy:

https://github.com/thoughtworksarts/EmoPy
– Microsoft Face API:

https://azure.microsoft.com/en-
us/services/cognitive-services/face/

© 2019 Natalie Parde

https://github.com/thoughtworksarts/EmoPy
https://azure.microsoft.com/en-us/services/cognitive-services/face/

Biomedical Image Processing
Employing computer vision to aid in clinical

diagnosis, anatomical modeling, and surgical
guidance

•Cancer detection
•fMRI analysis
•Surgical site visualization
•Electrical source imaging

Relies heavily on:

•Segmentation
•Shape analysis

Useful tools for biomedical image processing:

•Deep Learning Toolkit for Medical Imaging
(DLTK): https://dltk.github.io/

•Insight Segmentation and Registration
Toolkit (ITK): https://itk.org/

© 2019 Natalie Parde

https://dltk.github.io/
https://itk.org/

Self-Driving Cars
■ Automatically detecting all the necessary

information needed to drive a car
autonomously:

– Lane boundaries

– Traffic lights

– Road curvature
– Obstacles (objects, animals, other cars,

or people!)

– Traffic signs

■ Must track objects from one frame to another

■ Must do all of this in real time, and quickly
enough that other components of the car can
act upon the information

■ For more information about self-driving cars:

– https://engineering.uic.edu/interdiscipl
inary-areas/autonomous-vehicles/

– Waymo self-driving cars:
https://youtu.be/B8R148hFxPw

© 2019 Natalie Parde

https://engineering.uic.edu/interdisciplinary-areas/autonomous-vehicles/
https://youtu.be/B8R148hFxPw

Robotics
■ Automatically interpreting visual input to facilitate navigation and enhance a robot’s

knowledge of its surrounding environment

– Can a robot move from one room to another without encountering obstacles?

– Can an robot detect irregularities in items moving down an assembly line?

– Can a robot in a multi-person home correctly identify the person with whom it
is speaking? (Can it automatically detect that a person is in the room?)

■ Advantages that robots have over most other vision applications: motion and capacity
for two-way interaction

■ Useful tools for robotics applications:

– Robot Operating System (ROS): http://www.ros.org/
– Webots: https://www.cyberbotics.com/

– Simultaneous Localization and Mapping (SLAM) datasets:
https://github.com/youngguncho/awesome-slam-datasets

– Code for affect recognition in NAO robots:
https://github.com/thealexhong/starship

– Code for gesture recognition in NAO robots:
https://github.com/AravinthPanch/gesture-recognition-for-human-robot-
interaction

■ For further reading, check out: https://github.com/Kiloreux/awesome-robotics

© 2019 Natalie Parde

http://www.ros.org/
https://www.cyberbotics.com/
https://github.com/youngguncho/awesome-slam-datasets
https://github.com/thealexhong/starship
https://github.com/AravinthPanch/gesture-recognition-for-human-robot-interaction
https://github.com/Kiloreux/awesome-robotics

Wrapping
up….

■ Image characteristics

■ Image processing
– Gaussian Blur, Sobel filter

■ Image segmentation
– Watershed algorithm, K-Means

clustering

■ Image classification
– Engineered and implicitly learned

features

■ Tools, datasets, and other useful resources

■ Applications of computer vision
– Face recognition, emotion recognition,

biomedical image processing, self-
driving cars, and robotics

© 2019 Natalie Parde

