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Computer Vision

■ The study of computational mechanisms that 
enable machines to interpret, modify, and generate 
visual imagery.
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How are images 
represented in 

computer 
vision?

• Two-dimensional array of pixels
• A numeric value is associated 

with each pixel, corresponding 
to its color/shade
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Types of Images
■ Black and white

– All pixels contain a binary value
■ Grayscale

– All pixels contain an integer ranging from 0-255
– This value corresponds to shade from black to white

■ Color
– All pixels contain three integers, each ranging from 0-255
– These values correspond to shades of three color channels: red, 

green, and blue
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A few core tasks….

IMAGE 
PROCESSING

IMAGE 
SEGMENTATION

IMAGE 
CLASSIFICATION
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Image Processing

■ Performing an action or sequence of actions on an image in order 
to transform it or extract information from it

■ Actions might include:
– Blurring the image
– Sharpening the image
– Making the image brighter
– Making the image darker
– Cropping the image
– Resizing the image
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Gaussian Blur

■ Blurring an image using a Gaussian function

■ All pixels in a square window are multiplied by fractions corresponding to their 
distance from the center of the window

■ The products are summed to produce the single value for the output pixel
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Sobel Filter

■ Detecting edges by identifying areas in an image with sharp changes in color and/or 
intensity between two adjacent pixels

■ All pixels in a square window are multiplied by two different kernels
– One designed to catch horizontal changes
– One designed to catch vertical changes
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One obvious 
application of image 
processing….

■ Instagram filters!

■ Typically a mix of 
blurring/sharpening and 
color operations
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Other Applications
■ Image editing

■ Image stitching

■ Image restoration

■ Digital art
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Image Segmentation

■ Automatically finding the boundaries between 
different entities in an image

■ Necessary preprocessing step for many 
downstream tasks!

■ Two common approaches:
– Watershed method
– K-means clustering
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Watershed Algorithm
■ An image segmentation technique modeled after 

the way water flows from a high point (a hill or 
mountain) to a lower point (a river or large body of 
water)

– A watershed is the high point, whereby on 
one side water flows one way, and on the 
other side it flows the other way

■ Images are converted to grayscale
– Viewed as a topographic map, high points → 

light shades, low points → dark shades
■ Pixels in the image can correspond to:

– A local minimum
– A basin that flows to the local minimum
– Watershed lines

■ Goal is to detect the watershed lines, thereby 
segmenting the image
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K-Means Clustering
■ Segments images by clustering pixels into k groups based on their 

associated features

■ K-Means clustering works by:
1. Randomly assigning each pixel to one of k clusters
2. Computing the mean of each cluster
3. Computing the similarity between each pixel (regardless of 

current cluster assignment) and each cluster mean
4. Assigning each pixel to the cluster to whose mean it is most 

similar
5. Repeating steps 2-4 until the clusters converge

■ K-Means clustering can be applied to many tasks!

■ With image segmentation, additional assumptions can be added 
when assigning pixels to improve upon segmentation performance 
(e.g., neighboring pixels are highly likely to belong to the same 
cluster)

© 2019 Natalie Parde



Image Classification
■ Automatically assigning a category label to an image or to an entity in an image

■ Why is this difficult?

– Different perspectives

– Different sizes

– Proximity to other objects

– Lighting conditions
– Variation among objects of the same class
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How can we solve this problem?

■ Lots of data!

■ Traditional machine learning
– K-Nearest Neighbor (classification version of K-Means)

■ Deep learning
– Convolutional neural networks

? ?
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Features for 
Image 

Classification

RGB Histograms

Local Binary Patterns (LBP)

Histograms of Oriented Gradients (HOG)

Scale-Invariant Feature Transform (SIFT)

Neural Features
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RGB Histograms

■ Computed across a region, rather than a single pixel

■ N-dimensional (1 ≤ # ≤ 255) feature vector for each color channel (red, green, and 
blue)

■ Feature values correspond to the number of pixels in each range within the region of 
interest
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Local Binary Patterns
■ Computes a local representation of texture by comparing the values for a given pixel 

with those of other neighboring pixels

■ Sets binary values for neighboring pixels based on a threshold:
– Current pixel ≥ neighboring pixel → 1
– Current pixel < neighboring pixel → 0

■ Converts n-bit array of binary pixel values to decimal

■ When a decimal value has been computed for all pixels, computes a histogram over 
all decimal values

■ This histogram is the feature vector!
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Histograms of Oriented Gradients
■ Computes the distribution of gradient (increases or decreases in magnitude) orientations 

within a source image, providing us with information about the shapes of objects in the image
■ Starts by computing the horizontal and vertical gradients for each pixel, along with their 

magnitude and direction
■ Calculates histograms of the computed gradients in pixel windows of size !×#

– Bins in the histogram correspond to angles
– Values added to the bins correspond to magnitudes

■ Normalizes blocks of gradients across multiple pixel windows
■ Concatenates all normalized vectors of histograms to create the final feature vector
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Scale-
Invariant 
Feature 

Transform

Computes keypoints in 
an image in a way that 

is invariant to size, 
rotation, perspective, 

and lighting conditions

Progressively blur an 
image using Gaussian 

Blur across several 
octaves (resized images 

that are half the 
previous size)

Compute the Difference of 
Gaussians (DoG) for each 
sequential pair of blurred 
images, subtracting the 

blurrier from the clearer of 
the two

Compute the minima and 
maxima in the DoG images by 
comparing each pixel with all 
others in its neighborhood 
(including pixels in the DoGs
“above” and “below” it)
•If the pixel itself is higher or lower than all 
other pixels in its neighborhood, it is a 
minimum or maximum

Reject minima and 
maxima (a) with 

intensities below a 
threshold or (b) 
having gradients 

indicative of a flat 
region or edge 

(rather than a corner)

Compute the gradient and 
magnitude of the pixels 
around each keypoint
(minima/maxima), and 
construct histograms of 
these gradients using 10-
degree bins
•The keypoint is assigned the 
orientation that serves as the “peak” 
in the histogram

Generate a 16x16 
pixel window 
around each 
keypoint, and 

break that window 
in sixteen 4x4 

windows

Compute the 
gradient and 

magnitude for each 
4x4 window, and 

construct histograms 
using 45-degree bins 
ranging from 0-360 

degrees

Normalize the values in those bins 
(subtract the keypoint’s orientation 
from each 4x4 window, and create 

a maximum threshold to avoid 
influence from changes in lighting), 
producing the 128-dimensional (16 

4x4 windows, 8 bins per window) 
feature vector for the keypoint
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Neural Features
■ Raw pixel values

■ Pixel values in sliding windows
– Individual windows are fed into the neural network

■ Pixel regions
– Input image is first scanned for possible objects using a search algorithm, and the 

pixel regions comprising the possible objects are then fed into the neural network

■ The neural network automatically learns which combinations of pixels/pixel values 
represent different image features …the bulk of the work when using neural features 
shifts to tuning parameters in the network
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Think, Pair, Share
■ Write down three computer vision tasks for which 

one or more of the engineered features we 
discussed (RGB histograms, LBP, HOG, and SIFT) 
might be useful, and three tasks for which implicitly 
learned features might have an advantage over 
other feature types

■ Talk about those viewpoints with a partner
– Did you name similar tasks?
– Did you disagree about anything?

■ Share one task for which one or more of the 
engineered features might be useful, and one task 
for which implicitly learned features might have an 
advantage

■ Timer: https://www.google.com/search?q=timer

© 2019 Natalie Parde

https://www.google.com/search?q=timer


Popular 
Tools for 

Computer 
Vision Tasks

•https://opencv.org/OpenCV

•https://scikit-
image.org/

scikit-
image

•http://simplecv.org/SimpleCV

•https://python-
pillow.org/Pillow
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Datasets and Other Useful 
Resources
■ Huge, curated list of computer vision books, courses, datasets, libraries, tutorials, 

blogs, etc.: https://github.com/jbhuang0604/awesome-computer-vision

■ Main computer vision conferences:
– IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– IEEE International Conference on Computer Vision (ICCV)

■ Datasets for various computer vision tasks:
– http://www.cvpapers.com/datasets.html
– http://riemenschneider.hayko.at/vision/dataset/
– https://www.visualdata.io/

■ ImageNet Challenge:
– 2018 onward: https://www.kaggle.com/c/imagenet-object-localization-

challenge
– 2017 and prior: http://image-net.org/challenges/LSVRC/2017/index
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Applications 
of Computer 

Vision

Face recognition Emotion 
recognition

Biomedical 
image processing

Self-driving cars Robotics
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Face Recognition
■ Automatically matching new faces to known individuals

■ Useful for a variety of applications:
– Surveillance
– Passport/ID card authentication
– Safety alerts
– Photo tagging

■ Must be robust to changes in perspective, scale, and 
lighting

■ Popular methods:
– GaussianFace: 

https://github.com/jangerritharms/GaussianFace
– FaceNet: 

https://github.com/davidsandberg/facenet

■ Useful face recognition library: 
https://github.com/ageitgey/face_recognition
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Emotion Recognition
■ Automatically matching facial expressions to a set of 

known emotions

■ Useful for:
– Forensics
– Marketing
– Social robotics

■ Open question: should emotion recognition be framed 
as a categorical or continuous problem?

– Most work to date has classified emotions into 
seven discrete categories: fear, anger, sadness, 
disgust, contempt, happiness, and surprise

■ Useful tools for emotion recognition:
– EmoPy: 

https://github.com/thoughtworksarts/EmoPy
– Microsoft Face API: 

https://azure.microsoft.com/en-
us/services/cognitive-services/face/

© 2019 Natalie Parde

https://github.com/thoughtworksarts/EmoPy
https://azure.microsoft.com/en-us/services/cognitive-services/face/


Biomedical Image Processing
Employing computer vision to aid in clinical 

diagnosis, anatomical modeling, and surgical 
guidance

•Cancer detection
•fMRI analysis
•Surgical site visualization
•Electrical source imaging

Relies heavily on:

•Segmentation
•Shape analysis

Useful tools for biomedical image processing:

•Deep Learning Toolkit for Medical Imaging 
(DLTK): https://dltk.github.io/

•Insight Segmentation and Registration 
Toolkit (ITK): https://itk.org/
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Self-Driving Cars
■ Automatically detecting all the necessary 

information needed to drive a car 
autonomously:

– Lane boundaries

– Traffic lights

– Road curvature
– Obstacles (objects, animals, other cars, 

or people!)

– Traffic signs

■ Must track objects from one frame to another

■ Must do all of this in real time, and quickly 
enough that other components of the car can 
act upon the information

■ For more information about self-driving cars:

– https://engineering.uic.edu/interdiscipl
inary-areas/autonomous-vehicles/

– Waymo self-driving cars: 
https://youtu.be/B8R148hFxPw
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Robotics
■ Automatically interpreting visual input to facilitate navigation and enhance a robot’s 

knowledge of its surrounding environment

– Can a robot move from one room to another without encountering obstacles?

– Can an robot detect irregularities in items moving down an assembly line?

– Can a robot in a multi-person home correctly identify the person with whom it 
is speaking?  (Can it automatically detect that a person is in the room?)

■ Advantages that robots have over most other vision applications: motion and capacity 
for two-way interaction

■ Useful tools for robotics applications:

– Robot Operating System (ROS): http://www.ros.org/
– Webots: https://www.cyberbotics.com/

– Simultaneous Localization and Mapping (SLAM) datasets: 
https://github.com/youngguncho/awesome-slam-datasets

– Code for affect recognition in NAO robots: 
https://github.com/thealexhong/starship

– Code for gesture recognition in NAO robots: 
https://github.com/AravinthPanch/gesture-recognition-for-human-robot-
interaction

■ For further reading, check out: https://github.com/Kiloreux/awesome-robotics
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Wrapping 
up….

■ Image characteristics

■ Image processing
– Gaussian Blur, Sobel filter

■ Image segmentation
– Watershed algorithm, K-Means 

clustering

■ Image classification
– Engineered and implicitly learned 

features

■ Tools, datasets, and other useful resources

■ Applications of computer vision
– Face recognition, emotion recognition, 

biomedical image processing, self-
driving cars, and robotics
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